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Probing porous media with superfluid acoustics 
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Received 13 August 1990 

Abstract. We discuss those properties of porous media which can be deduced 
from experiments using measurements of superfluid ls t ,  2nd, 4th, and 3rd sound; 
we also explore the transferability of these results to other transport experiments, 
especially the acoustic properties of porous media saturated with Newtonian fluids. 
Many of the relevant geometrical parameters are those which arise in a canonical 
electrical conductivity problem in which the porous solid is insulating, the pore fluid 
is conducting, and there is an additional surface conductivity lining the walls of the 
pore space. The most important geometrical parameters are the three-dimensional 
tortuosity of the pore space, a3, the two-dimensional tortuosity of the pore/grain 
interface, cxz, and A ,  which is a well-defined measure of dynamically connected pore 
sizes. 

1. Introduction 

Historically, the understanding of superfluid 4He in terms of the macroscopic two-fluid 
equations of motion was established in no small measure by means of experiments in 
porous media and other restricted geometries. It is now possible to turn this situation 
around and use the superfluid as a probe of the transport properties of porous media. 
There are several parameters, chara.cteristic of the pore geometry, which describe 
aspects of many of these transport phenomena. In order to  introduce them, it is 
pedagogically useful to describe a paradigm problem in electrical conduction. For a 
more complete review of these effects, we refer the reader to  an earlier article [l]. 

Consider, then, the problem of electrical conduction in a porous medium in which 
the solid phase is electrically insulating, the pore fluid has a conductivity uf and the 
walls of the pore space are coated with a surface conductor of strength E,. In figure 1 
we plot the results of calculations of the effective conductivity, ueff, on two model 
porous media of differing porosities, 4 ,  wherein C, is held constant whilst uf is varied 
(from [2]). The calculated conductivity ueff is a complicated function of uf and of C, 
which simplifies in two limiting cases as follows. 

a weak perturbation, we have 
(i)  If conduction is dominated by the pore fluid, with the surface conductivity as 

( l a )  

where F and A are constants characteristic of the porous medium. In this limit 
conduction is nearly proportional to of and the effects of C, are a perturbation. In 
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Figure 1. Calculated conductivity, a,tf, as a function of pore-fluid conductivity, 
a f ,  in the grain consolidation model with a fixed value of surface conductivity, Ca. 
The data points are the results of numerical calculations and the straight lines are 
equation (1). After [2]. 

fact, it is an exact result [2 ,3]  that  A can be related to  the microscopic potential G,,(T) 
which would exist in the absence of the surface mechanism 

A is a measure of the size of the dynamically connected pore space. It is defined in 
terms of a weighted surface-to-pore-volume ratio in which only those parts of the pore 
space which carry current are counted; in the special case of a pore space consisting of 
winding cylindrical tubes of radius R, then A E R. It will prove convenient to  define 
the three dimensional tortuosity of the pore space: a3 3’4 where q5 is the porosity. 
The straight lines implied by equations ( l a )  and ( l b )  are plotted in figure 1. 

(ii) The opposite limit, in which conduction is dominated by the surface mecha- 
nism, is formally similar to that given above (see [l]), namely 

2 

geff = f -1  (E, + 2) + c,o (2) . 

It will prove convenient to define the two-dimensional tortuosity of the pore surface: 
cy2 

The reason for these arcane definitions is that a3, A,  and cy2 are relevant to a large 
class of experiments on porous media, notably acoustics and diffusion, and that the 
values deduced from one experiment are directly transferable to  the others. In the 
rest of this article, we shall review those results. 

f ( S / V )  where S/V is the surface-to-total-volume ratio. 

2. Dynamic permeability 

If a porous medium, saturated with a viscous fluid, is subjected to an oscillatory 
pressure gradient, then the induced fluid flow will also be oscillatory and proportional 
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to  the pressure gradient 

where 17 is the viscosity and &(U)  is the dynamic permeability; k is frequency dependent 
in the region where the viscous skin depth is comparable to  A.  Indeed, the high- 
frequency limit of k ( w )  is exactly related [3] to a3 and to  A .  A model [3] for &(U)  

based on a variety of exact results (notably the low-frequency and the high-frequency 
behaviour) is 

where ko is the DC permeability. This function works well when compared against 
calculations based on a periodic array of truncated spheres or octahedra [4], and 
against experimental measurements taken on sphere packs [5] as shown in figure 2. 
(See PI.) 

3. 1st and 2nd sound 

Below a temperature TA = 2.17 K ,  4He undergoes a phase transition in which i t  
behaves something like a miscible mixture of two fluids: a normal fluid having a small 
but finite viscosity, and a superfluid fraction which has exactly zero viscosity. Because 
there are two degrees of freedom there are two acoustic normal modes: 1st sound, the 
usual pressure/density wave and 2nd sound, in which the temperature and entropy 
propagate as waves. There are several advantages in using He 11 (as it is called) to  
probe porous media [l]: 

(i) It is much more compressible than most solids, so the porous medium may be 
considered perfectly rigid. 

(ii) The effects of viscosity can be varied simply by changing the temperature (i.e. 
by varying the normal-fluid/superfluid ratio). 

(iii) For the same reason, the viscous skin depth, which is the yardstick for probing 
the porous media, can be varied as a function of temperature. As a point of informa- 
tion, the viscous skin depth of the normal fluid ranges from 0.1 p m  to 10.0 p m  for 
temperatures in the range 1.2 to  2.2 K and frequencies around lo4 Hz. 

(iv) Since the speeds of 1st and 2nd sound differ by approximately a factor of 10, 
there is increased dynamic range in any experiment simply by changing from a 1st 
sound measurement t o  that of 2nd sound. 

(v) A very thin film ( w  100 A) of superfluid is capable of supporting sound waves 
called 3rd sound. This mode has great potential for probing surface transport phe- 
nomena in porous media (see below). 

The attenuation and the dispersion of the two acoustic modes of He 11 in a fully 
saturated porous medium can be calculated in terms of the dynamic permeability 
k ( w )  assuming that  the viscous drag on the normal fluid is the dominant effect [3]. In 
figure 3 we see the results of a comparison of the calculated dispersion and attenuation 
of 1st and of 2nd sound against the measured values [l]. The only input parameters 
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Figure 2. A comparison of the dynamical permeability predicted by equation (4) 
(the 'bow-ties') against (a) numerical calculations and ( b )  experimental measure- 
ments in a variety of geometries. After [6]. 
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Figure 3. (U) index of refraction and ( b )  specific attenuation of the 2nd sound 
mode in a porous medium, QF-20 (registered trademark), manufactured by the Ferro 
Corporation. The surface is the theoretical prediction based on the model dynamic 
permeability, equation (4) using the following values of the four parameters: 6 = 
40.2%, IC = 16.8 darcys, cy = 1.89, A = 19.0 pm; all but A were determined by 
independent measurements. There is a vertical line drawn from each datum to the 
surface. After [l]. 

(aside from the He 11 properties) are those listed in the figure. Without going into 
detail here, we note that  in the high-frequency limit of the theory the speeds of the 
two modes in the porous medium, [V, : i = 1 ,2 ]  are related to  the bulk speeds of 1st 
and 2nd sound, C, and C,, by = Ci/&; the specific attenuations of these modes 
are directly related to  A ,  viz: l /Qi  0: &/A.  Thus we have a sensitive acoustic means 
of determining the two electrical parameters, a3 and A.  

4. Biot theory of acoustics in fluid-saturated porous media 

Suppose the porous medium is now saturated with an ordinary viscous fluid (e.g. 
water) whose compressibility is comparable to  that of the solid. The Biot theory of 
acoustics was developed to  handle this situation [7]; since both solid and fluid phases 
can move independently of each other, though their motions are coupled, the Biot 
theory predicts two longitudinal modes of propagation as well as the usual transverse 
(shear) mode. The theory has tremendous predictive power in that all of the input 
parameters can be measured independently [7]. One such input is the dynamic per- 
meability, i ( w ) ,  which, as we have seen, can be deduced from superfluid acoustics 
measurements. The results of such a comparison, theory versus experiment, are pre- 
sented [l] in figure 4. There are no adjustable parameters in the theory, all of them 
having been measured directly. 

5 .  4th sound and healing length effects 

If the pores are sufficiently small that  the normal fluid cannot move (or if the frequency 
is sufficiently low that the viscous skin depth is greater than A ) ,  one has 4th sound, 
a mode whose temperature dependence is well understood both theoretically and 
experimentally. If the pores are small enough there comes a point where the walls of 
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F igure 4. (U) Speeds and ( b )  attenuation of the fast, slow, and shear acoustic modes 
in a water-saturated sample of fused glass beads. The full curves are calculated from 
the Biot theory of acoustics in porous media wherein all the input parameters have 
been measured independently. The symbols are the measured speeds. After [l]. 

the porous medium act to  reduce the superfluidity over a distance away from the wail 
called the healing length, CH(T) . The variation of healing length with temperature 
has been deduced, approximately, from 3rd sound measurements; it increases from 
3.6 A to  N 10 A as the temperature is increased from 1.2 K although it presumably 
diverges a t  TA. Within the context of this treatment of healing length effects, the 
speed of 4th sound is [2] 

where Ci E ( p , / p ) C ;  is the ‘bare’ speed of 4th sound and a, and A have their usual 
meanings. Thus,  the temperature dependence of the speed of 4th sound in these 
small-pore media may prove to be a useful way to probe them; rfl(T) is a tunable 
yardstick. 

6 .  3rd sound 

3rd sound is a mode which propagates in a thin film of superfluid N (50-150) A with 
a speed, C,, which is dependent on p , / p  and on film thickness. If such a film coats 
the internal walls of a porous medium, the speed is renormalized to [l] 

A value of a2 in a porous medium consisting of a packed powder has been successfully 
deduced in this way (see [l]). 
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7. Shaly sands 

We now return to  a practical application of the electrical problem upon which we 
have based the  foregoing discussion: electrical conduction in brine-saturated porous 
media in which there is appreciable conduction through the electrolytic double layer 
which coats the internal walls of the pore space. Typically this occurs in sedimentary 
rocks containing clay minerals. This is a complicated problem involving cation and 
anion motion, each of which moves through diffusion as well as conduction. Here, 
we point out tha t  in these systems it is not known how the surface conductance, ,Es, 
depends on brine salinity. By measuring the relevant geometrical parameters with 
the  superfluid acoustic techniques sketched out above, it should become possible to 
deduce the  value of E, and its salinity dependence in real systems. A practical way of 
doing this involves the use of Pad& approximant techniques [8]. 
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